
01110010

01100101

01100001

01100001

a field guide to writing code that lasts

01101001

0
110

110
0

0111
0100

01111001

by Jason McCreary

0
11
0
0
10

0

0
110

10
0
1

0
110

0
0
10

BaseCode
A .eld guide to writing lasting code

by Jason McCreary

“To those about to read, we salute you…”

Table of Contents

BooBootststrtrapap 77

A tale of two quotes . 7

Why these practices matter. 10

Why a 7eld guide . 10

How to read BaseCode. 11

Accept the challenge . 12

FFormaormattingtting 1313

Why formatting actually matters . 14

What to do. 16

Choosing a format. 16

Automate the format . 17

Forget it . 17

Closing example. 18

Dead CodeDead Code 2121

The issue . 22

Dead code . 23

Commented Code . 23

Unused code . 24

Unreachable code . 25

Abandoned code . 26

Closing example. 27

NesNested Codeted Code 3030

Getting back on top. 31

Empty blocks . 31

Conditional values . 31

Guard clauses. 32

Switching to if . 34

Complex loops . 35

Closing example. 35

UUsing Objectssing Objects 3939

Modern Objectivity . 39

Formalize. 40

Couple . 41

Encapsulate . 43

Closing Reminder . 44

Big BlockBig Blockss 4545

The Process . 45

Recognize . 46

Regroup. 47

Refactor. 50

Closing example. 55

NamingNaming 6565

Making naming things easy. 65

Naming Rules . 66

Avoid abbreviations. 66

Follow conventions . 67

Leverage context. 68

Naming Guidelines . 70

Human Readable . 71

Express Domain . 71

Background processing . 71

Closing Example . 72

RRemoemoving Commenving Commentsts 7766

Closing example. 78

RReasonable Reasonable Reeturnsturns 8686

Avoiding bad returns. 86

Empty values . 87

Expressive representations . 89

Null objects . 90

Closing . 92

Rule oRule of Tf Thrhreeee 9933

Defer Until Necessary . 93

Closing example. 96

SSymmeymmetrytry 102102

Seeking Symmetry . 104

Syntactic Symmetry . 104

Semantic Symmetry . 104

Systemic Symmetry . 105

Closing Example . 105

ExitExit 117117

Bootstrap

A tale of two quotes

I was traveling to the lake with the family. Although I normally use this time to unplug, I

take a book to read during the drive - which is normally related to programming. What can

I say, I love what I do. I’m also a slave to e6ciency.

At the time I was reading Implementation Patterns by Kent Beck. It was one of the shorter

books on The Reading List recommended while interviewing with companies in Silicon

Valley. I had no idea it would contain one of the universal truths about programming. One

which would forever change the way I write code.

Programs are read more often than they are written.

All of my experience supported this. Every time I reviewed an answer on StackOver8ow or

browsed the source code of a project on GitHub I was rreadingeading codecode. Even when I wrote

code, I read several lines of exiting code to determine where to insert the new code.

I often paraphrase the original quote by simply stating:

We read code more than we write code.

7 Bootstrap - Bootstrap

https://www.amazon.com/Implementation-Patterns-Kent-Beck/dp/0321413091
https://jason.pureconcepts.net/2014/09/the-reading-list/

Given this universal truth, how could I improve the code I write? Well, I could prioritize

readability. Instead of playing code golf with fancy one-liners I could be more expressive.

After all, another programmer is going to read that code in the future and ask, “WTF does

this do?”

Readability has become my measure of code. It in8uences all the code I write. If I alter

code in any way it is for rreadabilityeadability. Not how many abstractions or patterns are used. But

how readable the code is. When someone asks, “which code is better”, the deciding factor

is readability.

All through college I interned as a web programmer. I did all the grunt work like markup

web forms and save their data to a database. Although most of this was simple content it

was before the days of WordPress or modern full-stack frameworks.

So I did what any young programmer would do - I wrote my own. It was not just a CMS, it

was a CMSCMS genergeneraatortor. I created a YAML-esque domain language which I parsed to create

all the things. It generated the HTML and PHP for all the cruddy web forms. It generated

Bootstrap - A tale of two quotes 8

the MySQL CREATE TABLE statements. It injected the forms into templates to provide all

the admin interfaces. I made it an active generator, so when a new 7eld was added all I

had to do was update the con7g 7le and I could regenerate entire sections of the CMS.

It was awesome. I was the best programmer alive.

I believe every programmer needs to experience this at least once. It’s really the only way

to realize how insane it is. Now I look back and ask myself:

• Why did I need my own domain language?

• Why did I need an active generator?

• Why did I need to support every HTML input type?

The truth is II didndidn’t’t. You rarely need complexity. In the moment, it’s easy to believe you

do. But in retrospect I would’ve been far more productive with a simple script to generate

a majority of the web form 7elds and coded the rest manually.

Only through re8ection on your own similar experience can you realize the next universal

truth:

Most programs are too complicated - that is, more complex than they need to be to

solve their problems e6ciently.

Rob Pike said this in one of his essays in 1989. Things have only gotten more complicated

since. When I interned, it was common for web programmers to write an entire site in

a basic text editor using only HTML. Now web programmers need to know JavaScript

and CSS (really pre-processed, supersets of JavaScript and CSS), package managers and

build tools, and multiple frameworks.

Neither approach is right or wrong. But one is obviously more complex than the other.

Complexity is an easy sell to programmers, and for whatever the reason, we buy in bulk.

We pre-architect entire systems before writing a single line of code. We reach for using

the new shiny tool. We force design patterns or data structures into our programs.

We need to remind ourselves mosmost code is too complet code is too complexx.

9 Bootstrap - A tale of two quotes

Start simple and keep it simple for as long as you possibly can. It’s likely you aren’t going

to need what you thought (YAGNI). In the rare cases you do, the solution is often self-

evident, without requiring any speculation.

When I started writing BaseCode I wanted to focus solely on readability. Ironically, to keep

it simple as a single motivation. Yet, when we put readability and complexity side by side,

we notice a subtle distinction - simple code is not necessarily readable and, conversely,

complex code is not necessarily unreadable.

In the end, while readability is the primary motivation, we need to balance complexity

as well. All of the practices within BaseCode aim to improve readability and reduce

complexity.

Why these practices matter

BaseCode takes a bottom up approach. The goal is to get back to the basics. Because of

this some might dismiss these practices as too trivial. They think they don’t matter. This

is a mistake.

From the same essay on complexity, Rob Pike goes on to say, “programs are often

complicated at the microscopic level”. He’s referring to the fundamental aspects of the

code.

All code consists of the same fundamental elements: variables, control structures, etc.

Complexity at a low level bubbles up to complexity at a higher level. By adopting practices

which focus on the elements of all code (the base code), we can write any code to last.

Why a .eld guide

Reading all of the books that went into BaseCode would take years. Robert C. Martin

wrote a great book on Clean Code that alone is 412 pages. I’ve read it as well as many

other books on The Reading List.

That’s not to say you shouldn’t read these books. More that most books contain 8u5. I

mean no disrespect. I just wanted BaseCode to be very focused. I intentionally kept it

short. As such, I didn’t feel right calling it a book. BaseCode is more like the last chapters

Bootstrap - Why these practices matter 10

https://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882

of Refactoring - a catalog of speci7c code practices. I landed on 7eld guide because this

feels more akin to an army manual or survival guide.

The practices in BaseCode are the result of the books I’ve read, the programmers I’ve

paired with, and the code I’ve written over 20 years. I spent a lot of time distilling each

practice to its purest form to avoid overlap. Each one is pragmatic so you can start

applying them immediately to your code.

How to read BaseCode
You can read this cover to cover like any other book. It’s short enough you may be able to

get through it in a day. You can start with the 7rst practice, apply it, then move on to the

next practice.

However, you don’t need to read it cover to cover. You are welcome to choose your own

adventure. If you have a codebase with a lot of comments, read Removing Comments.

Need inspiration for 7nding better names, read Naming Things. Been copy and pasting a

lot of code, reread Rule of Three.

The practices don’t necessarily build upon the previous. However, they are progressive.

The 7rst set of practices are easy - ones you can apply immediately. The next set take a

little more work. The 7nal few practices may take a lifetime to master.

No matter the order, I would suggest reading one practice at a time. Once you have, apply

it. Implement it into your codebase. Have your teammates review it. Discuss it. Challenge

it. If you get stuck reread the chapter. If you get really stuck, email me or message me

on Twitter (seriously). I believe each one of these practices improves code readability and

decreases code complexity. If it doesn’t, I want to know about it.

I also encourage you to read the entire 7eld guide. All of these practices work together in

harmony. Missing any one leaves opportunity for noise within your code. Over time that

may grow louder and louder, drowning out the others. Keeping your code readable and

avoiding complexity takes a lot of discipline. You must apply these practices consistently.

11 Bootstrap - How to read BaseCode

https://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672/

Accept the challenge

These practices are opinions which deal with subjective matters. I don’t expect you to

agree with all of them. You may even 7nd some controversial. I know we’re passionate

programmers. As such, we can take things personal and become defensive of the code

we write.

I remember a discussion regarding separation of concerns with a respected peer. As the

new guy on team, I challenged his opinion. This was 7ne. What wasn’t 7ne was making

it a zero-sum game. There had to be a right and wrong. He recognized this and ended

the discussion by saying, “I was where you were a year ago. You’ll get there.” This, of

course, pissed me o5. Now it was personal - after all he was challenging my experience. A

year later, my view aligned almost exactly with his. It wasn’t personal. He was just a little

farther down the road than me.

We’re all on a journey. My goal is to share these practices as I believe they will improve the

code you write. They will challenge the way you write code. As such, they will challenge

you. It’s not personal. They’re so that you may take your journey a little farther.

Bootstrap - Accept the challenge 12

Formatting

Let’s jump right in, shall we… When it comes to formatting there are a few kinds of

programmers. There are those who don’t care. They just write code. Aside from the chaos,

this might actually be better than the other two.

The next are those who make an e5ort to format their code. However, they may not apply

it consistently across the codebase. After all, we’re human.

The 7nal kind is those who really care. I mean they really, really care. I was this latter kind.

If the code wasn’t formatted, I’d spend time formatting it before I began writing new code.

If another programmer didn’t format the code, oh man, I’d let them know.

I remember being team lead and we had adopted a modi7ed version of PSR-2 as our PHP

standard. We were in a review meeting and I was, of course, criticizing the formatting. One

of my teammates replied with “why does it matter?”.

At the time, this pissed me o5. From my perspective, we had agreed upon a standard as

a team and they still didn’t follow it.

I’m less anal about it now. Nonetheless formatting remains a controversial topic. It leads

to holy wars such as tabs versus spaces and K&R versus Allman.

You have to let go. I know that can be hard. After all, formatting is one of those personal

marks we imprint on the code. But is this really the lasting mark you want to leave on the

code?

13 Formatting - Formatting

Why formatting actually matters

My teammates question still lingers. It deserves an answer. At the time, I was so focused

on the action I never thought about the reason behind it. The reason is the exact

motivation behind BaseCode - improving readability.

Malformed code is incredibly hard to read. So, I’d take the time to format it in an e5ort

improve its readability. But this was misguided. I’d often spend more time reformatting

the code than I would writing new code.

The trolls will argue code format is subjective. A format one programmer 7nds readable

another programmer may not. This may appear true, but only on the surface.

The underlying process of reading is nonott subjective. We all learn how to read. We train our

brains to turn letters into words, words into sentences, and so on. Over time we rely on a

certain cues, such as formatting, to make the process of reading easier. If I were to say,

start m e s s i n g with the fo rm at ,it would bemuch harder to read.

Reading code is no di5erent. In fact, Douglas Crockford states this in JavaScript: The

Good Parts:

It turns out that style matters in programming for the same reason that it matters in

writing. It makes for better reading.

As programmers, we unconsciously rely on similar cues to make the process of reading

code easier. We recognize structures like assignment statement, if statements, and

method blocks. When the code is well formatted we can recognize these structures easily.

If the code format is malformed or the format constantly changes, it makes it harder for

us to recognize these structures.

Too often programmers focus on the syntax. When talking about formatting, we need

to focus on readability, not syntax. We need a way to represent the code as we see it

unconsciously. Kevlin Henney demonstrates this through a visual representation of code.

To do so, he replaces characters with X and eliminates punctuation (like line ending

semicolons). What we are left with is a visual representation of the code. Or how our minds

Formatting - Why formatting actually matters 14

https://www.amazon.com/JavaScript-Good-Parts-Douglas-Crockford/dp/0596517742
https://www.amazon.com/JavaScript-Good-Parts-Douglas-Crockford/dp/0596517742

see the code.

So if we have the following simple assignment statement:

variable = value;

Its visual representation would be:

XXXXXXXX X XXXXX

Let’s look at another visual representation:

XX XXXXXXX XX XXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXX
XXXX XXXXXX XXXXXX

What is this code? What does it do? How much do we know simply from the visual

representation? Maybe you can identify something, maybe you can’t…

Now let’s add some formatting with simple whitespace adjustments:

XX XXXXXXX XX XXXXXXXXXXXXXXXXXXXXX
XXXXXX XXXXX

XXXX
XXXXXX XXXXXX

Have we learned more about the code? It’s the same code, just formatted di5erently. Even

though we don’t see the actual syntax, as a programmer we pick up on certain cues. We

see paired blocks of code. We see indentation levels. We see the top levels start with two

characters and four characters. In a fraction of a second, we unconsciously identi7ed this

structure as an if/else block.

There’s no denying the second format relays more information than the 7rst. All we did

was format the code in a standard way. Formatting the code has the largest impact on

readability. Code that is properly and consistently formatted has what Kevlin Henney calls

“visual honesty”. That is the visual representation and the actual representation align.

We now realize format is not as much about what we like, but how we see. By letting go of

our own personal format and adopting a standard format, we can make it easier for every

15 Formatting - Why formatting actually matters

programmer to read the code.

What to do

Code formats can vary from person to person and language to language. They can

change over time. So what do we do?

First, understand programming is a team sport, even if the only members of the team are

you and future you. You have to let go of your individual formatting for the bene7t of the

team. Being anal bene7ts no one. You’ll go mad formatting all yourself or drive your team

crazy making them adhere to your format.

Second, the tiny nuances of the formatting don’t matter. Tabs versus spaces or K&R

versus Allman, they don’t really matter. What does matter is a format is applied

consistently so we can improve the readability by increasing the “visual honesty”.

So, here’s what you do about a formatting:

1. Choose it

2. Automate it

3. Forget it

Choosing a format

I will not dictate a speci7c code format. As noted, the format naturally varies between

programmers and languages. Therefore, it’s highly unlikely you’ll 7nd one to 7t all

programmers or all languages. You must come to terms with the fact that whatever the

format you choose may not be the one you want or the one you use in other languages.

That may be di6cult at 7rst. It was for me. But sooner or later you’ll realize your time is

more valuable than to waste formatting code.

I strongly recommend adopting a sstandartandardd format. Nearly all languages have a common

(popular) code format. Remember every detail of this format may not match your own.

That’s OK. You are welcome to attempt to adjust it, but as before I think you will 7nd that

to be a waste of time.

For example I often write PHP. As such I adopted the PSR-2 code style. For JavaScript I

Formatting - What to do 16

use StandardJS. For Objective-C and Swift I use the style applied by my IDE (Xcode).

Adopting a common standard not only relinquishes the governance of formatting, but

also means my code aligns with other code written in that language.

Automate the format

You have better things to do with your time than format code. Let me say that again

because it took me a long time to realize this. You have better things to do with your time

than format code.

Choosing a format is the hardest step. The next step is applying and maintaining that

format. First 7nd a tool to automate this process. Your IDE is good. Being able to run a

script or service is even better. For example, when writing PHP, I run PHPCodeSni5er to

verify I adhere to the PSR-2 code style. If the format you have chosen cannot be applied

in an automated way, you should reconsider the format you chose.

Once you have found a tool that can automate your format, run it across your entire

codebase. Check in all of those changes as a single commit (yes, you’re using version

control). Some programmers will not like this. Their common reason is that it messes up

the commit history, speci7cally when running commands like git blame. While having

formatted code far outweighs placing blame on a previous code change, this can be

remedied. If you are this programmer or have this programmer on your team, you can

pass a commit reference to git blame to run blame against the history before the mass

formatting.

Forget it

Now that you have chosen a format and applied it to your codebase everything is great,

right? Well not really. Over time your code will fall back into an unformatted mess. This is

inevitable. The result of laziness and new programmers.

Violations in format should be treated as a syntax error. Programmers should not be able

to merge code unless it is formatted to the chosen standard. Again, you can automate

this with a validator. Most of these tools can also correct any violations.

However, this should not be something a programmer has to think about. Once you’ve

done the two previous steps you should be able to forget about formatting. It’s something

17 Formatting - Automate the format

that just happens.

Closing example

Let’s close with some real world code I encountered in my last project. We’ll continue to

clean up more of this code through other practices. For now, we’ll focus on formatting.

function check($scp, $uid){
if (Auth::user()->hasRole('admin')){

return true;
}
else {
switch ($scp) {

case 'public':
return true;
break;

case 'private':
if (Auth::user()->id === $uid)

return true;
break;

default: return false;
}
return false;
}

}

Of course, I can muddle through this code. But it’s not easy to read. The formatting is

nonexistent, or at least inconsistent. Even though it’s a simple switch statement, it’s

“visually dishonest”. We can see this through the visual representation:

Formatting - Closing example 18

XXXXXXXX XXXXXXXXXXX XXXXX
XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXX XXXX

XXXX
XXXXXX XXXXXX

XXXX XXXXXXXXX
XXXXXX XXXX
XXXXX

XXXX XXXXXXXXXX
XX XXXXXXXXXXXXXXXXX XXX XXXXX

XXXXXX XXXX
XXXXX

XXXXXXXX XXXXXX XXXXX

XXXXXX XXXXX

By automatically applying a standard format we can immediately improve the readability

with very little e5ort. Before looking at the code, we can see

XXXXXXXX XXXXXXXXXXX XXXXX

XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXX XXXX

XXXX
XXXXXX XXXXXX

XXXX XXXXXXXXX
XXXXXX XXXX
XXXXX

XXXX XXXXXXXXXX
XX XXXXXXXXXXXXXXXXX XXX XXXXX

XXXXXX XXXX

XXXXX
XXXXXXXX

XXXXXX XXXXX

XXXXXX XXXXX

19 Formatting - Closing example

From the visual representation it’s still a bit busy. However, it is nonetheless formatted.

This reveals other opportunities to clean up the code. By not wasting our time focusing

formatting, we are free to focus on other more important things, such as improving the

code through other practices.

For now, here’s the formatted code.

function check($scp, $uid)
{

if (Auth::user()->hasRole('admin')) {
return true;

} else {
switch ($scp) {

case 'public':
return true;
break;

case 'private':
if (Auth::user()->id === $uid) {

return true;
}
break;

default:
return false;

}
return false;

}
}

Formatting - Closing example 20

	BaseCode
	A field guide to writing lasting code

	Table of Contents
	Bootstrap
	A tale of two quotes
	Why these practices matter
	Why a field guide
	How to read BaseCode
	Accept the challenge

	Formatting
	Why formatting actually matters
	What to do
	Choosing a format
	Automate the format
	Forget it

	Closing example

	Dead Code
	The issue
	Dead code
	Commented Code
	Unused code
	Unreachable code
	Abandoned code

	Closing example

	Nested Code
	Getting back on top
	Empty blocks
	Conditional values
	Guard clauses
	Switching to if
	Complex loops

	Closing example

	Using Objects
	Modern Objectivity
	Formalize
	Couple
	Encapsulate

	Closing Reminder

	Big Blocks
	The Process
	Recognize
	Regroup
	Refactor

	Closing example

	Naming
	Making naming things easy
	Naming Rules
	Avoid abbreviations
	Follow conventions
	Leverage context

	Naming Guidelines
	Human Readable
	Express Domain
	Background processing

	Closing Example

	Removing Comments
	Closing example

	Reasonable Returns
	Avoiding bad returns
	Empty values
	Expressive representations
	Null objects

	Closing

	Rule of Three
	Defer Until Necessary
	Closing example

	Symmetry
	Seeking Symmetry
	Syntactic Symmetry
	Semantic Symmetry
	Systemic Symmetry

	Closing Example

	Exit

